
Role of melatonin on renal ischemia-reperfusion injury 

discoveries-reports.com 1 

Review Article 
 

 

Role of melatonin on renal ischemia-reperfusion injury 
 

Md Ripon Ahammed1,*, Amey Joshi1, Sunam Kafle1, Aqsa Mumtaz1, Keval Thakkar1, Yusra 

Minahil Nasir1, Subarna Shrestha1, Heeya Shah1, Gaayathri Krishnan1, Fariha Noor 

Ananya1, Eugenio Angueira2 

 
1Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL, USA 
2Larkin Community Hospital, South Miami, FL, USA 

                          

* Corresponding author: Dr. Md Ripon Ahammed, Division of Clinical and Translational Research, Larkin 

Community Hospital, South Miami, FL, USA. Email: ripon.ahammed90@gmail.com  
 
Submitted: February 08, 2022; Revised: April 03, 2022; Accepted: April 29, 2022; Published: 2022 

Citation: Ahammed MR, Joshi A, Kafle S, Mumtaz A, Thakkar K, Nasir YM et al. Role of melatonin on 

renal ischemia-reperfusion injury. Discoveries Reports 2022; 5(1): e29. DOI: 10.15190/drep.2022.3 

 
ABSTRACT 

Acute kidney injury secondary to ischemia-

reperfusion injury can occur after an infarction, 

sepsis or a renal transplantation. If not treated 

promptly, it can be fatal due to widespread oxidative 

tissue injury and inflammation. Melatonin, 

previously known for its circadian regulatory 

properties, has been of recent interest in preventing 

and treating renal ischemic reperfusion injury 

because of its antioxidant and anti-inflammatory 

properties. In this review we summarize the 

pharmacokinetic properties of melatonin, the 

pathophysiology of renal ischemic reperfusion injury 

and how we can use melatonin to prevent renal 

ischemic reperfusion injury. Furthermore, we 

discuss the recent clinical trials evaluating the 

impact of melatonin on the renal ischemic 

reperfusion injury. This review summarizes the 

current evidence on the beneficial effects of 

melatonin and prospects using melatonin to improve 

patient care and prevent fatalities from acute kidney 

injury. The initial data on the effects of melatonin in 

preventing and treating renal ischemic reperfusion 

injury looks promising. However, more randomized 

control trials on humans need to be conducted to 

evaluate the complete impact of melatonin on the 

renal ischemic reperfusion injury, the correct 

formulations, dosage and the possible adverse 

effects. Only then can melatonin be used as an agent 

to prevent renal ischemic reperfusion injury. 
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1. Introduction 

 

Melatonin, an endogenous methoxyindole hormone 

synthesized by the pineal gland, was initially known 

for its regulatory effect on circadian rhythm because 

of its chronobiotic and synchronizing properties that 

reinforce oscillations or adjusts the timing of the 

central biological clock1. Apart from its sleep 

regulatory effects, melatonin is a verified antioxidant 

and an anti-inflammatory molecule with numerous 

health benefits2. Melatonin has the ability to 

scavenge up to 10 reactive oxygen species (ROS) 

compared to a classic antioxidant that scavenges one 

or less ROS. Therefore, it exerts such immense 

antioxidant effects by directly preventing oxidative 

tissue damage and blocking transcription factors of 

pro-inflammatory cytokines3. 

According to its pharmacokinetics, it displays a 

short half-life, a fast turnover and undergoes high 

first pass metabolism4. Melatonin can cross the 

membranes of the cell, organelles, and the nuclear 

membrane, directly interacting with intracellular 

molecules in the non–receptor-mediated actions, via 

which it exhibits anti-inflammatory, anti-apoptotic 

and anti-oxidative properties5. Moreover, melatonin 

can interact with both the membrane and nuclear 

receptors, which lead to its receptor-mediated 

actions6. Melatonin manifests high lipophilic 

properties and wide distribution of receptors; 

therefore, it easily crosses through the cell 

membrane and has effects in most organs7. 

Sudden temporary impairment of blood flow to a 

particular organ causes ischemia-reperfusion injury, 

which is followed by the restoration of blood flow 

and re-oxygenation. In kidneys, the hypoxia and 

reperfusion cause robust inflammatory and oxidative 

stress responses, resulting in acute kidney injury8. 

Acute kidney injury is a world-wide public health 

problem affecting millions of people, and it has 

become increasingly prevalent in recent years9. 

Ischemia-reperfusion injury induced acute kidney 

injury may take place after infarction, sepsis and 

renal transplantation. These events aggravate tissue 

damage by facilitating the initiation of an 

inflammatory cascade, which includes ROS, 

chemokines, cytokines and activation of 

leukocytes10, 11. Some experimental studies stipulate 

that melatonin exerts beneficial effects on kidneys, 

primarily through its free radical scavenging ability, 

maintaining organ antioxidant defences, preventing 

lipid peroxidation and its potential ability to induce 

autophagy12, 13.  

Given that oxidative stress along with 

inflammation are the primary causes of tissue 

damage in ischemia-reperfusion injury and knowing 

that autophagy provides an adaptive response for 

cells to sustain physiological function in the 

presence of stressful condition, this review aims to 

provide a perception into the mechanism and 

potential therapeutic benefits of melatonin in renal 

ischemia-reperfusion injury. 

 

2. Role of melatonin and its synthesis in the 

human body 

 

Melatonin or N-acetyl-5-methoxytryptamine, the 

biological clock of the human body, is primarily 

synthesized from the pineal gland. It helps in 

orchestrating and maintaining the circadian rhythm 

of the body, which is essential for healthy living. 
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This pleiotropic hormone, melatonin, is considered 

an example of a “zeitgeber”. The term “zeitgeber” 

(meaning, time giver or time cue) refers to 

environmental or external cues that are capable of 

helping circadian time function properly14. Two 

receptors have been identified that bind melatonin - 

melatonin binding receptor 1 [ML1], which has high 

affinity and melatonin binding receptor 2 [ML2], to 

which melatonin binds with a lower affinity. ML1 

receptors are found in the suprachiasmatic nucleus 

of the hypothalamus and help in the sleep-wake 

cycle. They are guanosine-5'-triphosphate (GTP) 

proteins, and act via the alpha and beta receptor 

pathways to inhibit adenylyl cyclase. Although 

widespread, the function and significance of ML2, 

has not yet been established and is still under study6, 

14-16.  

In the human body, melatonin is endogenously 

formed in the pineal gland and a small part of its 

production is contributed by the retina. The 

formation of this hormone is regulated by the change 

in diurnal and seasonal variations where there is an 

increase in hormone secretion during the night, 

peaking from 2 am to 4 am and then there is a 

gradual decline14. The postganglionic retinal nerve 

fibers relay signals for the synthesis and secretion of 

the ‘sleep-wake hormone’ by passing via the 

retinohypothalamic tract, the suprachiasmatic 

nucleus, the superior cervical ganglion, and 

culminating the pathway at the final destination, the 

pineal gland. Tryptophan, an essential amino acid, is 

a key substance involved in the synthesis of 

melatonin in the cells of the pineal gland. The 

sympathetic nervous system, the alpha 1 and beta 1 

receptors through cAMP signaling and the 

suprachiasmatic nucleus control the formation and 

release of the hormone14, 17. The pathway of 

melatonin synthesis is illustrated in Figure 1. 

The word most commonly associated with 

melatonin is sleep. One of the most important 

functions of this hormone is regulating the sleep-

wake cycle. Exogenous melatonin has been proven 

to be effective in disorders of sleep and arousal, such 

as jet lag, chronic insomnia, and others. Melatonin, 

when ingested, improves sleep propensity, improves 

wakefulness in the morning, and also increases the 

duration of rapid eye movement (REM) phase of 

sleep cycle14. Although unclear, the mechanism of 

melatonin in increasing REM sleep and 

improvement in sleep could be owed to a change in 

the regulation of gamma-aminobutyric acid (GABA) 

inhibition. Long-term consumption of melatonin, 

around 3 weeks, has shown an increase in the 

duration of sleep, in geriatric patients with 

insomnia14. 

Melatonin secreted by the ovary and placenta has 

an important part to play in pregnancy. It is 

suggested that melatonin helps maintain and 

 
Figure 1. Melatonin Synthesis       
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establish pregnancy by regulating the function of the 

corpus luteum. It was found to increase progesterone 

levels and maintain balance between luteotrophic 

and lytic factors. A synergistic effect with oxytocin 

has been established to facilitate delivery18. 

 

3. Role of melatonin in different diseases 

 

A strong link between the absence of melatonin and 

an increased propensity for developing diabetes 

mellitus has been established. Melatonin serves to 

improve insulin sensitivity and reduce resistance. 

Some studies even explore the possibility of 

preventing diabetes mellitus by melatonin 

supplementation19. The strong antioxidant and free 

radical scavenging effect of melatonin, is also found 

in the beta cells of the pancreas, thus reducing its 

damage and helping in the prevention of type 2 

diabetes mellitus14. 

Melatonin also serves as a cardioprotective agent, 

by upregulating the enzyme nitric oxide synthase, 

activating the survivor activating factor 

enhancement (SAFE), sirtuin-1/peroxisome 

proliferator-activated receptor gamma-coactivator 

alpha and endoplasmic reticulum-related signaling. 

It serves its purpose of cardioprotection by 

decreasing inflammatory reactions and cardiac 

muscle cell apoptosis. Additionally, it acts as an 

anti-atherosclerotic agent by reducing atherosclerotic 

plaque progression and cushioning the harmful 

effect of oxidative low-density lipoprotein (LDL) 

damage19. Dominguez-Rodriguez et al. illustrated a 

strong inverse relationship between endogenous 

melatonin levels and cardiovascular disease in a way 

that nocturnal melatonin synthesis and circulating 

levels are reduced in patients with coronary heart 

disease20. Clinical trials demonstrate that melatonin 

significantly reduces the area of myocardial 

infarction when used in the treatment of STEMI 

(ST-elevation myocardial infarction) patients after 

percutaneous coronary intervention (PCI)21. 

Obayashi et al. suggested that melatonin may have a 

role in the circadian rhythm of blood pressure 

(BP)22. This study supports the hypothesis that a low 

nocturnal melatonin level is associated with a non-

dipping BP pattern. Also, solid evidence supports 

that night-time melatonin administration reduces 

blood pressure in hypertensive patients (Scheer et 

al., 2004; Grossman et al., 2006)23. Jin et al. has 

illustrated that hypoxia induced pulmonary 

hypertension is improved by melatonin as it subdues 

the hypoxia induced high expression of proliferating 

cell nuclear antigen (PCNA), hypoxia inducible 

factor-1α (HIF-1α), and nuclear factor-κB (NF-

κB)24. Melatonin secretion decreases with age and 

decreased melatonin levels are found to be 

associated with various diseases, such as dementia, 

mainly neuro-degenerative disorders, especially 

Alzheimer’s and other types of senile dementia25, 26. 

In affected individuals, the melatonin rhythm is also 

abolished. It has been clinically proven that adequate 

sleep and a well-functioning circadian clock offer 

protection against neurodegeneration. Melatonin 

therapy has been involved in multiple clinical trials 

to prevent early-onset Alzheimer’s and to assist in 

healthy mental aging18, 27. 

Dysfunction of melatonin signaling leads to a 

plethora of consequences that goes far beyond sleep 

difficulties, i.e. leading to hypertension, anxiety, and 

free radical related injury to various organs28. 

  

4. Melatonin receptors in kidneys 

 

Melatonin (N-acetyl-5-methoxytryptamine) reaches 

all tissues of the body shortly after circulating levels 

are attained from its secretion by the pineal gland, as 

well as from its exogenous administration. The 

major physiological function of melatonin is to 

maintain circadian rhythm by acting on Melatonin-

1a (Mel1a=MT1) and Melatonin-1b (Mel1b=MT2) 

receptors in the suprachiasmatic nucleus of the 

hypothalamus29,30. Drew et al, 1998 have 

demonstrated gene expression for these receptors in 

the human fetal kidneys by detecting 2-(125I) 

iodomelatonin binding sites at the outer periphery of 

the developing renal cortex. The genes for both the 

receptors were identified by reverse transcription–

polymerase chain reaction (RT-PCR) of the human 

fetal kidney mRNA. Mel1a and Mel1b receptors are 

composed of 350 and 362 amino acids respectively 

and are G-protein coupled membrane receptors that 

act by inhibiting the formation of cAMP as well as 

cGMP. They have four intracellular and four 

extracellular domains, 7 transmembrane helices. The 

Mel1a receptor has higher affinity than the Mel1b 

and is responsible for most of the physiological 

actions. Protein kinase-Cα activation is mainly 

responsible for the production of the melatonin 

effect18. Retinoid-related orphan nuclear hormone 

receptor (RZR/RORα) is a nuclear receptor which 

belongs to the retinoic acid receptor superfamily and 

is responsible for the immunomodulation in 
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peripheral tissues, cellular growth, and 

differentiation of bone by melatonin31. 

 

5. Pathophysiology of renal ischemia-reperfusion 

injury 

 

Renal ischemia reperfusion injury, a component of 

intrinsic acute kidney injury, is associated with high 

morbidity and mortality32,33. This is associated with 

adverse clinical outcomes in patients undergoing 

organ transplantation, major surgery, or sepsis34. The 

depletion of adenosine triphosphate (ATP) and 

guanosine triphosphate (GTP) due to tissue hypoxia 

during ischemia reperfusion injury activates 

numerous intracellular pathways and systems that 

directly or indirectly destroy cytoskeleton resulting 

in cell death via necrosis or apoptosis35.  

Neutrophilic infiltration following vascular 

endothelial insult results in a cascade of 

inflammatory changes, including the release of 

cytokines, reactive oxygen species, and 

myeloperoxidase, resulting in subsequent tissue 

damage36. 

The reduction in the production of ATP during 

hypoxia diminishes the activity of the Na/K ATPase 

pump, leading to the intracellular accumulation of 

sodium. To rid the cell of the excess sodium, 

hyperactivity of the Na/H and Na/Ca exchanger is 

observed. This, however, increases intracellular 

calcium and decreases intracellular pH37. High levels 

of free calcium within the cell activate numerous 

enzymes which damage the cell membrane, 

cytoskeleton and degrade DNA. The increase of free 

calcium induces the opening of the mitochondrial 

permeability transition pore (mPTP), which in turn 

activates inflammatory and pro-thrombogenic 

cascades causing cytokine release and apoptosis38.  

The release of cytokines, interleukins (IL), and 

enzymes like proteases, myeloperoxidase, and 

endonuclease during ischemia-reperfusion injury are 

responsible for local tissue injury. Cytokines like 

midkine (MK) are produced locally and cause 

tubulointerstitial damage39. A group of proteases 

called caspases activate cellular apoptosis and cause 

the release of pro-inflammatory cytokines including 

IL-1 and IL-18 40. Ischemia-reperfusion injury also 

activates the complement system through the 

alternative pathway by endogenous ligands 

(DAMPs) which form a membrane attack complex 

(MAC). MACs cause direct injury to renal epithelial 

tubular cells by inducing their apoptosis. The release 

of C3a and C5a during this process promotes pro-

inflammatory cytokine release, ROS formation, and 

inflammatory cell recruitment furthering tissue 

necrosis and cellular apoptosis41. Besides this 

humoral response, a cell-mediated response to 

ischemia-reperfusion injury is also observed. The 

increased expression of leukocyte adhesion 

molecules (LAD), such as selectins, mucins, 

integrins, intercellular adhesion molecule-1 (ICAM-

1), and vascular cell adhesion molecule-1 (VCAM-

1), result in the infiltration and activation of 

leukocytes, which contribute to the inflammatory 

cascade by producing cytokines and ROS42. To 

counteract these inflammatory destructive 

mechanisms, the renal tubular and interstitial cells 

have developed reno-protective mechanisms against 

ischemia, like the nitric oxide system (NOS), heat-

shock protein (HSP) activation, and adenosine 2a, 3 

activations37. 

  

6. Melatonin’s role in oxidative stress/free 

radical injury and inflammation following 

ischemia-reperfusion injury 

 

Free radicals such as superoxide, hydroxyl free 

radical, and peroxynitrite anion are important 

mediators of inflammatory tissue damage following 

ischemia/reperfusion. They also lead to activation 

and secretion of inflammatory cytokines, such as 

tumor necrosis factor‐α, interleukin‐1, and 

interleukin‐6, and facilitate the induction and 

expression of inducible nitric oxide synthase (iNOS) 

and cyclo‐oxygenase (COX)‐243. Melatonin has been 

well known for its potent antioxidant effects, which 

is due to electron donation, and scavenges of free 

radicals44. 

Melatonin has been extensively studied as a reno-

protective agent in ischemia-reperfusion injury. 

Melatonin administration before the induction of 

ischemia-reperfusion injury resulted in significant 

preservation of renal function by decreasing 

oxidative stress, pro-inflammatory cytokines, and 

infiltration of neutrophils and macrophages45. 

Melatonin directly scavenges free radicals, such as 

the ROS and reactive nitrogen species (RNS), which 

is mediated by its main metabolites 

6‐hydroxymelatonin, N1‐acetyl‐N2‐formyl‐5‐metho 

(AMFK), N1‐acetyl‐5‐methoxykynuramine (AMK) 

and cyclic 3‐hydroxy melatonin13, 17, 46-48. The 

indirect antioxidant effect  if mediated by 

upregulating the synthesis of enzymes, such as the 
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glutathione synthase (GPx), superoxide dismutase 

(SOD) and catalase, which catalyse the conversion 

of very harmful free radicals to neutral or non-

harmful substances; and downregulating pro-oxidant 

enzymes like lipases, lipoxygenases, 

cyclo‐oxygenase, proteases, and endonucleases49-51. 

Studies have shown that chronic melatonin treatment 

reduces renal damage by restricting lipid oxidation 

and nitric oxide (NO) production in streptozotocin-

induced diabetic rats exposed to renal ischemia-

reperfusion injury52. It has also been shown to down-

regulate the expression of nuclear factor kappa beta 

(NF-kꞵ), p65, iNOS, and caspase-3, thus exerting 

anti-apoptotic action51,53. The role of melatonin in 

renal ischemia-reperfusion injury through different 

mechanisms is summarized in Figure 2. 

As discussed earlier, reperfusion following a 

period of ischemia produces cellular and organellar 

injury. Mitochondrial free radical overproduction 

exceeding the renal antioxidant reserve puts the 

structural and functional integrity of renal cells at 

risk. Mitochondrial membrane damage leads to 

electron leakage and loss of electrochemical 

gradient. Thus, there is a decrease in the ATP 

generation. It also leads to the release of cytochrome 

C (Cyt C) which activates apoptosis of the affected 

cells as well as the generation of free radicals. 

Melatonin acts at the level of the electron transport 

chain by stimulating NADH-coenzyme Q reductase 

(Complex I) and cytochrome c oxidase (Complex 

IV) enzyme activity leading to a reduction in 

electron leakage and free radical generation, a 

process known as radical avoidance17. Melatonin 

helps prevent or reduce the abnormal release of Cyt 

C and Bax, mitochondrial translocation of dynamin-

related protein 1 (Drp1) and Drp1/mitochondrial 

fission protein (Fis1) interaction. Upregulation of 

mitochondrial fusion protein (Mfn1) and Bcl-2 

modulation via the Janus kinase (JAK)/STAT3 

pathway is also mediated by melatonin54. Studies 

have shown that signal transducer and activator of 

transcription 3 (STAT3) activation exerts protective 

effects on renal proximal tubular epithelial cells after 

ischemia-reperfusion injury55 which is further 

supported by an experiment in which increased 

serum creatinine is determined in mice harboring a 

genetic deletion of STAT3 present only in the 

endothelium, compared with control mice after 

ischemia-reperfusion injury56. 

 
Figure 2. Summary of melatonin’s role in prevention of ischemia-reperfusion injury on kidney 
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PI3K/Akt/mTOR intracellular signaling pathway 

plays a central role in the regulation of cell cycle, 

cell proliferation, survival, and growth in response to 

extracellular stimulation. It is downregulated 

following acute cellular insult like ischemia-

reperfusion injury. Melatonin has been found to 

activate this pathway and exerts renoprotection 

following ischemia-reperfusion injury57. In 1998, 

Yano et al. found that Akt serine/threonine kinase 

can be activated by phosphoinositide-3-kinase 

(PI3K)-dependent or independent pathways. This in 

turn leads to upregulation of mammalian target of 

Rapamycin (mTOR) and increased expression of 

p53 molecule57. This pathway has also been found to 

upregulate various transcription factors that have an 

anti-apoptotic effect like cAMP response element 

(CRE) binding protein (CREB) and NF-kβ58, 59. 

HadjAyedTka et al. in 2015 mentioned that activated 

Akt downregulates glycogen synthase kinase-3 beta 

(GSK-3ꞵ) by phosphorylation which in turn 

decreases the level of phosphorylated voltage-

dependent anion channel (VDAC), thus preventing 

activation of the apoptotic cascade60. VDAC is 

located in the outer mitochondrial membrane and 

plays a role in membrane permeability and 

apoptosis60,61. Melatonin exerts suppressive effects 

on macrophage and CD4+ T-cells accumulation in 

the renal cells. Consistently elevated mRNA levels 

of pro-inflammatory cytokines secreted from 

macrophages and T cells, including tumour necrosis 

factor alpha (TNF–α) and interleukin-6 (IL-6), and 

chemokines that play a critical role in attracting 

macrophages and T cells into the tissues, including 

monocyte chemoattractant protein-1 (MCP-1) and 

C-X-C motif chemokine receptor 3 (CXCR3), were 

also significantly decreased by melatonin62. Findings 

of decreased myeloperoxidase (MPO) level and 

intercellular molecule-1 (ICAM1), IL1β, NF-κꞵ 

mRNA levels and increased IL10 mRNA level in the 

kidney of rats with renal ischemia-reperfusion injury 

is also consistent with the anti-inflammatory 

property of melatonin63. 

A study performed in 2019 by Si Shi et al. found 

a significant reduction in diabetic renal inchemia-

reperfusion injury in melatonin treated rats, which 

was mediated by melatonin dependent activation of 

the nuclear factor erythroid 2-related factor 2 (Nrf2) 

/Hemeoxygenase (HO-1) signaling pathway by up-

regulating the expression of Silent Information 

Regulator 2 associated protein 1 (SIRT1). SIRT1 

plays a vital role in reducing oxidative stress, 

inflammatory stimuli, cell senescence, and 

apoptosis. Nrf2 is a major transcriptional regulator 

of antioxidant proteins and kept in the cytoplasm by 

a cluster of proteins under normal conditions. 

Following stressful events like ischemia-reperfusion 

injury, it migrates to the nucleus which is further 

enhanced by SIRT1. SIRT1 plays a role in melatonin 

dependent manner in the activation of Nrf2 leading 

to increased intranuclear accumulation, DNA 

binding capacity, and transcriptional activity. This in 

turn upregulates the activity of a potent antioxidant 

enzyme Heme Oxygenase-1 (HO-1)52. Melatonin 

also exerts cytoskeletal protection of renal cells as it 

has a high affinity for Ca2+ -binding proteins like 

calmodulin and calretinin. Calcium starts to 

accumulate in the ER following ischemia which is 

further aggravated by reperfusion of the tissue. 

Melatonin acts by strongly inhibiting the binding of 

Ca2+ to those binding proteins, thus preventing 

cytoskeletal damage52. All these mechanisms lead to 

an increase in tissue repair and regeneration which is 

evidenced by decreased kidney injury 

histopathological score and mediated by the 

expression of regeneration-related proteins fibroblast 

growth factor beta (FGF-ꞵ), hepatic growth factor 

(HGF), and SRY box transcription factor-9 

(SOX9)63. 

Melatonin was also found to regulate the 

enhancement of autophagy through the 

TLR4/MyD88/MEK/ERK/mTORC1 signaling 

pathway in ischemia-reperfusion injury when given 

prophylactically45. Another mechanism by which 

melatonin decreased the oxidative stress in renal 

ischemia-reperfusion injury was by the reduction in 

renal malondialdehyde (MDA), myeloperoxidase 

(MPO), and protein oxidation64. A few studies also 

observed an increase in glutathione production and a 

decrease in lipid peroxidation when melatonin was 

administered in renal ischemia-reperfusion 

injury64,65.  

 

7. Melatonin’s role on ischemia-reperfusion 

injury of other organs 

 

Melatonin has shown similar benefits in ischemia-

reperfusion injury in many other organs, including 

the liver, lungs, brain, and heart66-70. By increasing 

glutathione production and decreasing the generation 

of free radicals and neutrophil-mediated damage, 

melatonin was found to be cytoprotective in 

ischemia-reperfusion injury in hepatic, ileal, and 
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lung tissue66. Along with this, the increase in NO 

production and decrease in endothelin observed in 

melatonin pre-treatment in ischemia-reperfusion 

injury was found to preserve hepatic function and 

structure67. Melatonin pre-treatment in lung 

ischemia-reperfusion injury resulted in reduced 

neutrophil infiltration, intra-alveolar hemorrhage, 

and pulmonary edema68,69. The beneficial effect of 

melatonin was also observed in cardiac muscle cells 

by decreasing the oxidative damage seen in 

myocardial ischemia-reperfusion injury, thereby 

conserving myocardial tissue microstructure69.  

 

8. Recent studies on the renoprotective role of 

melatonin on ischemia-reperfusion injury 

 

As discussed, melatonin is a receptor-independent 

intracellular free-radical scavanger with potent 

antioxidant capacity and anti-inflammatory 

properties widely used to tackle ischemic 

reperfusion injury. This allows the neutralization of 

free radicals and stabilizes the membranes70. Thus, a 

lot of studies have focused on identifying the role of 

melatonin to limit ischemia-reperfusion injury in 

various organs including liver, heart and kidneys. 

Reynoso et al. in his study explained the effect of 

melatonin on increasing glutathione levels and 

reducing lipid peroxidation65. These helped in 

reversing the ischemic reperfusion injury caused by 

renal transplant. Melatonin also preserved renal 

function and prevented the rise in nitrite oxide (NO) 

levels, which is postulated to be the main cause of 

renal injury65. As we have discussed before, hypoxia 

and acidosis are the main contributing factors in 

causing renal injury. Beckman et al.71 in his study 

postulated that the production of nitric oxide can 

also aggravate the ischemic insult on the vital organs 

of the body. This theory is still being scrutinized as 

the effects of NO differ according to its sites of 

production, action and concentration according to 

Goldstein et al.72. NO at high concentrations 

interacts with superoxide to produce peroxynitrite 

(ONOO). Peroxynitrite also oxidizes sulfhydryl 

groups and produces hydroxyl radicals (OH) which 

are able to induce membrane lipid peroxidation65. As 

mentioned in the previous sections, melatonin and 

its effects on these free radicals have been studied 

widely and is said to be the scavenger of these free 

radicals73,74. Hence, giving melatonin can prevent the 

formation of these radicals and this along with the 

increased production of glutathione can prevent 

renal ischemic reperfusion injury65. Panah et al. 

designed the first randomized clinical trial studying 

the effects of melatonin on renal ischemic 

reperfusion injury in humans75. Forty transplant 

patients were randomly assigned to receive either 3 

mg of melatonin or a placebo. Two blood samples 

were collected and later were studied to see the 

effect of melatonin on renal ischemic reperfusion 

injury. Melatonin, blood urea nitrogen / serum 

creatinine (BUN/creatinine) and neutrophil 

gelatinase-associated lipocalin (NGAL) levels in 

both groups were measured that these levels were 

higher in the group receiving melatonin as compared 

to the placebo group. Melatonin not only was 

associated with significant improvement in renal 

function as shown by the decreased BUN and 

creatinine, it also reduced the inflammatory and 

oxidative stress markers. This study, conducte that 

the use of melatonin can reduce the complications of 

ischemia-reperfusion injury due to its renoprotective 

effects in human kidney transplantation model. 

Although much has to be studied about the correct 

dosage of melatonin for its renoprotective effect in 

humans, a dose of 3mg oral melatonin showed 

significant effect in the study conducted by Panah et 

al.75. One of the studies conducted by Ahmadiasl et 

al. compared the anti-inflammatory effects of 

melatonin with erythropoietin and concluded that 

melatonin pretreatment was more beneficial than 

erythropoietin in protecting the kidney against 

inflammation and oxidative damage caused in renal 

ischemic reperfusion injury76. Another study by 

Yilmaz et al. also reported promising results on 

protective effects of zinc and melatonin on 

preventing the oxidative damage in renal ischemic 

reperfusion injury in rats. Furthermore, melatonin 

has been found to be beneficial in kidney transplant 

patients as it protects the graft from ischemia 

reperfusion injury77. This was further supported by a 

study done by Li et al. who explained how 

melatonin protected the kidney donor grafts through 

its anti-oxidative, anti-apoptotic and NF-kB 

inhibitory capacity78. While the initial trial in 

humans by Pana et al. looks promising, much is 

needed to be investigated before using melatonin to 

prevent renal reperfusion injury. It is yet to be 

determined whether melatonin works best alone or 

in combination with other agents. The correct dose 

to prevent renal ischemic injury without having any 

significant adverse effects is also to be determined. 

A summary of studies revealing renoprotective 
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effect of melatonin on ischemia-reperfusion 

injury is presented in Table 1. 
 

9. Conclusion 

 

Renal ischemia-reperfusion injury can be highly 

fatal due to excessive inflammation and 

overproduction of free radicals. Melatonin, due to its 

antioxidant, anti-inflammatory and free radical 

scavenging effects, looks promising in preventing 

renal ischemic reperfusion injury. While the initial 

studies have paved a way to widely test the reno-

protective effect of melatonin in humans, much is 

yet to be determined before hailing it as a wonder 

drug. New frontiers that need to be explored include 

the safety profile, doses and duration of melatonin 

therapy. These investigations will not only help us 

understand the true significance of melatonin in 

 

  Table 1. Summary of studies revealing renoprotective effect of melatonin on ischemia-reperfusion injury 

 
No. Author/Study 

Country 
Study 

Design 
Subjects Sample 

Size 
Intervention (dosage 

and administration) 
Outcome 

1 Panah F et 

al./Iran75 
Randomized 

Controlled 

Trial (RCT) 

Patients 

undergoing 

renal 

transplant 

40 3 mg/day oral 

Melatonin, first dose 

given 24 hours before 

RT until discharge from 

hospital (n=20) 

Serum of oxidative stress 

markers such as 

malondialdehyde (MDA), CP, 

TNF-α were significantly 

reduced in melatonin group 

compared to placebo group 
2 Deniz et 

al./Turkey79 
Animal 

Intervention 

Study (AIS) 

Male 

Wistar 

Rats 

28 Intraperitoneal (IP) 

injection of melatonin 

(10mg/kg) in the last 5 

days of a 15-day trial 

period. I/R was induced 

at the end of 15 days. 

Melatonin group had 

significantly reduced BP, 

oxidative stress, improved renal 

function and limited microscopic 

structural changes in kidney 

3 Kurcer Z et 

al./Turkey48 
AIS Male 

Sprague-

Dawley 

rats 

48 IP melatonin 

4mg/kg/day for 15 days 
Melatonin group had reduced 

levels of MDA, protein carbonyl 

(PC) and Nitric Oxide (NO). 

Histological damage was 

reduced by melatonin 
4 Erson N et 

al./Turkey53 
AIS Male 

Sprague-

Dawley 

rats 

32 IP injection of 

melatonin (10mg/kg), 6 

hours prior to ischemia 

and at the beginning of 

reperfusion 

Melatonin group had reduced 

level of oxidative stress products 

and decreased alteration from 

ischemic injury 

5 Rodriguez-

Reynoso S et 

al./Mexico65 

AIS Male 

Sprague-

Dawley 

rats 

120 Melatonin 10 mg/kg 

dissolved in 1 ml of 1% 

ethanol was 

administered by IP 

route 

Melatonin group had reduction 

of the increase in creatinine and 

inducible nitric oxide synthase 

(iNOS) expression along with 

decreased oxidative products 
6 Li Z et 

al./Germany78 
AIS Lewis rats 20 Melatonin (5 mg/kg 

body weight) dissolved 

in 5 ml milk via gavage 

2 hours before left 

donor nephrectomy 

Melatonin group had down-

regulation in the expression of 

NF-kb 65, iNOS and caspases-3. 

It showed improved survival and 

decrease in blood urea nitrogen 

(BUN), creatinine, 

transaminases and LDH 
7 Sener G et 

al./Turkey64 
AIS Wistar 

albino rats 
48 Melatonin 20 mg/kg 

was administered 

subcutaneously 15 

minutes prior to 

ischemia 

BUN and creatinine levels after 

the injury were reversed by 

melatonin treatment 
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preventing ischemia-reperfusion injury, but they will 

also help us develop the correct strategies for its use 

in preventing and treating renal ischemic-reperfusion 

injury. 
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