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ABSTRACT 

Artificial intelligence (AI) and machine learning 

based applications are thought to impact the practice 

of healthcare by transforming diagnostic patient 

management approaches. However, domain 

knowledge, clinical and coding expertise are likely 

the biggest challenge and a substantial barrier in 

developing practical AI models. Most informatics and 

AI experts are not familiar with the nuances in 

medicine, and most doctors are not efficient coders. 

To address this barrier, a few “no-code” AI platforms 

are emerging. They enable medical professionals to 

create AI models without coding skills. This study 

examines Teachable Machine™, a no-code AI 

platform, to classify white blood cells into the five 

common WBC types.  Training data from publicly 

available datasets were used, and model accuracy was 

improved by fine-tuning hyperparameters. 

Sensitivity, precision, and F1 score calculations 

evaluated model performance, and independent 

datasets were employed for testing. Several factors 

that influence the performance of the model were 

tested. The model achieved 97% accuracy in 

classifying white blood cells, with high sensitivity 

and precision. Independent validation supported its 

potential for further development. This is the first 

study that demonstrates the value of a free no-code 

algorithm based AI platforms use in hematopathology 

 

using authentic datasets for training. It opens an 

opportunity for the healthcare professionals to get 

hands-on experience with AI and to create practical 

AI models without coding expertise.  
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INTRODUCTION 

  

In recent years, the field of healthcare has witnessed 

the emergence of powerful tools such as artificial 

intelligence (AI) and machine learning1. AI has found 

applications across various facets of the medical field. 

It can transcribe medical notes, produce patient 

information summaries, and provide valuable support 

to insurance companies and payors in the claims 

process. Substantial efforts have been directed 

towards integrating AI into the interpretation of 

medical images, spanning domains like radiology, 

pathology, optometry, and endoscopy. Furthermore, 

AI-driven tools are increasingly being employed for 

the examination and comprehension of extensive 

research databases, encompassing a wide array of 

data, from laboratory results to clinical information2-
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5. However, developing AI models in these domains 

often requires a blend of expertise in both computer 

science and medical science.  The bottleneck/barrier 

is two ways: computer scientists are not familiar with 

the nuances of medicine and most physicians and 

healthcare professionals do not have a significant 

background in computer science6. The new 

generation of AI platforms is called the no-code 

platforms. They feature an intuitive graphical 

interface with simple drag-and-drop functionalities 

that empowers beginners to create AI models. A 

significant portion of these platforms operates in the 

cloud, eliminating the need for installation, 

maintenance, and related administrative challenges7. 

By leveraging these no-code AI systems, medical 

professionals can more easily transform their ideas 

into tangible AI models, empowering them to 

contribute to the advancements in AI applications 

within their fields of expertise. 

Nevertheless, no-code AI platforms have received 

limited attention from scholars, despite predictions of 

their rapid adoption through 20237. One contributing 

factor is the limited introduction of these platforms to 

healthcare professionals. We believe that a broader 

dissemination of practical examples showcasing the 

use of no-code AI platforms in medicine, along with 

educational papers and workshops targeting the 

healthcare professional community, will encourage 

widespread engagement in such projects by 

healthcare professionals. 

In this study, we set out to examine the capabilities 

of Teachable Machine, a freely available no-code AI 

platform, in classifying peripheral blood cells. Our 

focus was on categorizing white blood cells into five 

of the most common distinct peripheral blood cell 

types: neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils. Through this 

demonstrative study, we propose that a no-code AI 

platform can create potential AI models for medical 

and pathological applications. These tools may help 

transcend the computing-healthcare boundaries and 

harness the power of AI to improve patient care. 

 

MATERIAL AND METHODS 

 

Data collection 

 Training cells were obtained from publicly available 

published datasets8-10. These datasets consisted of 

images captured using CellaVision machine. No 

images were removed from these databases, and the 

data were used as published without modification or 

image enhancements. 

 

Model development with Teachable Machine 

 Teachable Machine is a free online platform by 

Google for machine learning projects without a need 

for coding experience. It employs TensorFlow.js, a 

JavaScript machine learning library, to enable users 

to train and execute their models directly within their 

web browsers. It provides flexibility in adjusting 

three key hyperparameters: Epoch, Batch size, and 

learning rate. In this study, these parameters were 

fine-tuned to enhance the accuracy of the model. Care 

was taken to avoid overtraining the model. By default, 

the training dataset in Teachable Machine consisted 

of 85% of cells from each class for training purposes, 

while the remaining 15% were reserved for testing 

and evaluation. 

To independently assess the performance of the 

developed model, additional testing was conducted 

using white blood cell images obtained from different 

sources9-11. The sensitivity (recall), precision 

(positive predictive value), and F1 score were 

calculated to evaluate the model's performance using 

the following formulae:  

Sensitivity (recall) = True positives / (True positives 

+ False negatives); 

Precision = True positives / (True positives + False 

positives); 

F1 score = 2 × (precision × recall) / (precision + 

recall). 

Overall accuracy = the sum of correctly classified 

cells / total number of cells. 

 

The first model is available at  

https://teachablemachine.withgoogle.com/models/K

pPUw24d1/  

and the enhanced second model is available at 

https://teachablemachine.withgoogle.com/models/Vc

8hNMdN1/ 

 

A step-by-step visual explanation of how to make an 

image classification project on Teachable Machine is 

shown in supplementary material 1. 

 

Ethical considerations  

We used only publicly available datasets with no 

identifiable patient information or protected 

healthcare information (PHI) included. Thus, the 

study qualifies for exemption from institutional IRB 

requirements. 

https://teachablemachine.withgoogle.com/models/KpPUw24d1/
https://teachablemachine.withgoogle.com/models/KpPUw24d1/
https://teachablemachine.withgoogle.com/models/Vc8hNMdN1/
https://teachablemachine.withgoogle.com/models/Vc8hNMdN1/
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RESULTS 

 

To create a model for classification of peripheral 

white blood cells, we used images derived from 

CellaVision and published previously8. Google-based 

no-code Teachable Machine was used as an AI 

platform to classify the cells. The total number of 

cells used for this project was 10298 categorized in 5 

classes: neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils (Figure 1 and Table 1). 

 

 
Figure 1. Structure of the dataset used for training the AI 

algorithm. The percentage of each cell type in the dataset 

is presented in parenthesis. 

 

Table 1. Distribution of specimens by class for 

training and test sets 

Cell type Total 

samples 

Training 

samples 

Test 

samples 

Neutrophils 3329 2829 500 

Lymphocytes 1214 1031 183 

Monocytes 1420 1207 213 

Eosinophils 3117 2649 468 

Basophils 1218 1035 183 

 

Teachable Machine devides the cells into 85% for 

training and 15% for testing the algorithm. This 

platform allows adjustment of three so-called 

hyperparameters that can change the learning process 

of the system: epoch, batch size, and learning rate12. 

An epoch refers to a complete iteration or cycle 

through the entire dataset during the training phase of 

a machine learning model. It signifies that the model 

has processed and learned from all the available 

training data once. The default epoch number of the 

Teachable machine is 50. Although the accuracy of 

the model for the trainning data increased as epoch 

increases, the accuracy of the model for the test data 

quickly reached a plateu and did not increase further 

(Suppl.Figure 1). We tried an epoch of 4 which 

resulted in comparable or better accuracy compared 

to an epoch of 50 (Suppl.Figure 2) and it also reduced 

the time to develop the model. In addition, a higher 

number of epochs in machine learning can potentially 

lead to overfitting, where the model becomes too 

specific to the training data and performs poorly on 

unseen data13. Overfitting occurs when the model 

learns not only the general patterns in the data but also 

the noise or random variations present in the training 

set (memorization). This is reflected in the loss 

function, which measures the error or discrepancy 

between the predicted outputs of the model and the 

actual target values in the training data. As the 

number of epochs increased (until an epoch of 4), the 

accuracy of the algorithm improved, and the loss 

function decreased, indicating a declining error in the 

system (Figure 2 and Suppl.Figure 1). However, a 

further increase in the number of epochs led to an 

increase in loss function (Suppl.Figure 1). 

Consequently, the model may fail to generalize well 

to new examples. Therefore we adopted an epoch of 

4. 

The batch size refers to the number of training 

examples utilized in a single forward and backward 

pass during the training process14. Instead of 

processing the entire training dataset at once, the data 

is divided into smaller batches, and the model updates 

its parameters based on the gradients computed from 

each batch. We tested several batch sizes (16, 32, and 

64) and observed that a higher batch size for our 

dataset does not improve the accuracy of the model 

and therefore chose the Teachable Machine default 

batch size of 16 (Suppl.Figure 2-4). 

The learning rate determines the step size or rate 

at which a model's parameters (weights and biases) 

are updated during the training process15. We tested 

several learning rates (0.001, 0.0005, and 0.0001) and 

observed that a lower learning rate (0.0005 and 

0.0001) does not improve the overal accuracy of the 

model (Suppl.Figure 2 and Suppl.Figure 5-6). Hence, 

we chose the default learning rate of 0.001. The lack 

of significant improvement of the model by tweaking 

these hyperparameters may be due to the originally 
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high classification accuracy that maxed out the 

outcomes.  

Although investigating the effect of hyperparameters 

on AI algorithms is not the focus of our study, using 

suboptimal parameters with intentionally lower 

accuracies could allow assessment of these 

parameter’s effect on the algorithms. 

The combination of an epoch of 4, batch size of 

16, and learning rate of 0.001 provided a model with 

high accuracy, sensitivity (recall), and precision 

(positive predictive value) in classifying the cells 

(Figure 2 and Table 2). The F1 score is a measure that 

combines two fundamental performance metrics, 

precision and recall, into a single value providing a 

balanced measure of a model's effectiveness. The 

 
 

Figure 2. Confusion matrix, accuracy and loss function for the first AI model. The system hyperparameters is shown 

on the top left. The accuracy per class and the confusion matrix show the performance of the AI model on the test set. 

The rows of the matrix represent the actual classes, and the columns represent the predicted classes. The diagonal 

elements of the matrix show the number of instances that were correctly classified, and the off-diagonal elements show 

the number of instances that were misclassified. The accuracy per epoch shows the accuracy of the AI model on the test 

set as a function of the number of epochs. The loss per epoch shows the loss of the AI model on the test set as a function 

of the number of epochs. 

 

 

Table 2. Performance metrics of the white blood cell classification AI model 

Cell type 
Sensitivity 

(Recall) 

Precision (Positive 

predictive value) 
F1 score # Samples 

Neutrophils 0.98 0.98 0.98 500 

Lymphocytes 0.96 0.97 0.97 183 

Monocytes 0.94 0.95 0.94 213 

Eosinophils 0.98 0.99 0.98 468 

Basophils 0.99 0.93 0.96 183 
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models performed well for all five cell types (F1 score 

>96%). The performance was slightly lower for 

monocytes (F1 score of 0.94). 

Since machine learning algorithms learn from the 

input information, it is crucial to validate the models 

using independent cohorts. For this purpose, 

CellaVision-derived images from various sources, 

were selected. No cell selection was performed to 

ensure an unbiased assessment of the model. The 

results showed a sensitivity of approximately 100% 

for monocytes and 85% for neutrophils and basophils. 

However, the sensitivity for eosinophils and 

lymphocytes were 0.42 and 0.25, respectively. 

(Figure 3 and Table 3). The overal accuracy of the 

model to classify these new cells was 73%. 

 
Figure 3. Confusion matrix for the independent images 

tested on the AI model. The confusion matrix shows the 

performance of the AI model on a test set of 101 images. 

The images were sourced from independent sources and 

consisted of 27 neutrophils, 12 lymphocytes, 27 

monocytes, 24 eosinophils, and 13 basophils. The diagonal 

elements of the matrix show the number of instances that 

were correctly classified, and the off-diagonal elements 

show the number of instances that were misclassified. 
 

One aspect about AI algorithms is that they are 

dependent on the type of data they are trained with 

and the diversity of the training datasets help the 

model to perform well with new data. Because the 

sensitivity of our AI model for lymphocyte and 

eosinophil classification was low, the model was 

trained with additional images. For lymphocytes, the 

high morphologic diversity necessitates the model to 

see more representative examples.  

Therefore, we added 10 more lymphocyte images 

to the training dataset9. For eosinophils, our training 

dataset contained images with bright red eosinophilic 

granules but the independent test dataset had 

eosinophils with dimmer red granules. 

We hypothesize that this may account for poor 

sensitivity (0.42). Hence, 24 eosinophil pictures that 

contained dimmer granules10 were added to the 

images and the model was trained with identical 

previous hyperparameters (Figure 4).  

This new enhanced model showed similar high 

overal accuracy of 97%. To test the effect of new 

training dataset images on the AI classification 

sensitivity, the first and the enhanced second model 

were tested on new independent images11,16-17. As 

shown in Figure 5 and Table 4, the enhanced second 

model when compared to the first model, has higher 

sensitivity for classifying lymphocytes (0.6 vs 0.8) 

and eosinophils (0.83 vs 1), respectively, reiterating 

the importance of a diverse dataset for training AI 

algorithms. 

 

Table 4. Sensitivity of the first and second AI 

classifier on independent images (test images from 

references 11, 16, and 17. 

Cell type First 

model 

Second 

model 

# Samples 

Lymphocytes 0.6 0.8 15 

Eosinophils 0.83 1 12 

 

Table 3. Performance metrics of the first AI classifier on independent images (test images from reference 

10) 

Cell type 
Sensitivity 

(Recall) 

Precision (Positive 

predictive value) 
F1 score # Samples 

Neutrophils 0.85 1 0.92 27 

Lymphocytes 0.25 1 0.4 12 

Monocytes 1 0.52 0.68 27 

Eosinophils 0.42 0.83 0.56 24 

Basophils 0.85 0.85 0.85 13 
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Figure 5. Comparison between the first and the second AI 

models for classification of lymphocytes and eosinophils. 

 

DISCUSSION 

 

Our study introduces an innovative approach to 

classifying white blood cells, utilizing a no-code AI 

model that can be employed by clinicians without 

coding expertise. We employed a large dataset 

comprising images from freely available published 

databases. The performance of our model in white 

blood cell classification demonstrated high sensitivity 

and precision. Furthermore, the independent 

validation of the model using unseen data allowed 

identifying the role of training database diversity on 

the AI performance. Importantly, addition of only 10 

new lymphocytes to a pool of already 1031 

lymphocytes and 24 new eosinophils with slightly 

dimmer granule color intensity to a pool of 2649 

eosinophils (less than 1% increase in the training cell 

pool) greatly improved the sensitivity of the 

algorithms when encountered unseen data. To the 

best of our knowledge, this study represents the first 

use of a freely available no-code AI platforms in the 

field of hematopathology and is among the few 

published studies exploring the application of a no-

Code platforms in Medicine18-19. 

Notably, our research excels in utilizing one of the 

largest number of distinct white blood cells to train an 

 
 

Figure 4. Confusion matrix, accuracy and loss function for the enhanced second AI model. The system hyperparameters 

is identical to those in figure 2, but 10 more lymphocytes and 24 more eosinophils from different sources were added to 

the training dataset to increase cell diversity. 
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AI model, resulting in highly accurate and precise 

classification compared to other models20. While 

some methods exist to expand sample sizes by 

generating synthetic variants through techniques like 

image rotation, contrast alteration, noise induction, or 

stretching, these variations are considered semi-

artificial, and although there is some merit in their 

use, they lack authenticity as biological variants21. 

Moreover, these synthetic variants, being highly 

similar to the original samples, may artificially inflate 

the performance metrics of the system. In contrast, 

our dataset remained unaltered and comprised over 

10,000 unique cells, providing a more representative 

foundation for clinical applications. 

A few important caveats in this study: we used 

images generated by CellaVision machine. Images 

made by other scanners or taken by a normal camera 

were not included in the training. This is because our 

primary goal was to familiarize clinicians and 

pathologists with AI platforms and allow them to 

have hands-on experience in developing an AI model 

with no coding experience and not to generate an all-

inclusive AI platform for clinical applications. This 

preliminary and initial study is for demonstration of 

the model, and not for identifying abnormal cell 

types.  Additionally, there are various subtypes within 

each cell type that hold significant clinical relevance. 

For instance, neutrophils may contain different types 

of intracellular granules, or the number of nuclear 

segments may differ, which are associated with 

specific diseases (e.g., bi-lobed nuclei in Pegler Huet 

anomaly and myelodysplastic syndrome, presence of 

intracellular microorganisms in sepsis and 

anaplasma). The complexity of phenotyping these 

cells necessitates expert labeling by experienced 

technologists or hematopathologists, along with 

correlation with other diagnostic findings such as 

microbiological tests and flow cytometry. The lack of 

a large publicly accessible database encompassing 

immature cells or cells with specific phenotypes for 

training AI models creates a distinctive research 

niche. 

The utilization of no-code AI models presents a 

unique opportunity for clinicians, radiologists, 

pathologists, and other healthcare professionals who 

have access to high-quality and expert-labeled 

medical information. It allows them to generate 

clinically relevant and valuable AI models in their 

respective fields of study, aiming to enhance patient 

care. In addition to image-based models, no-code 

platforms such as Teachable Machine enable the 

creation of models based on audio and postural (pose) 

inputs. This opens up exciting possibilities for 

employing audio inputs in cardiology, pulmonology, 

vascular surgery, prenatology, and speech pathology. 

The authors have experience and studied other 

platforms in histopathology; however, many of these 

domains are not freely available. 

In summary, the recent availability and evolution 

of no-code AI platforms present an unparalleled 

opportunity for medical experts to advance their 

unique ideas and create valuable models that may 

finally contribute to better patient care. 
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