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ABSTRACT 

The paradigm of dental medicine is shifting from a 

reactive surgical model to precision pediatric caries 

diagnostics, emphasizing early detection of 

pathogenic oral microbiota. Rapid point-of-care 

assays capable of identifying high-density 

Streptococcus mutans are critical to enable targeted 

intervention. This pilot study evaluated the diagnostic 

validity of a high- threshold monoclonal antibody-

based lateral flow assay (Saliva-Check Mutans, 

SCM) relative to selective culture for identifying 

clinically meaningful S. mutans loads in children. 

Stimulated saliva samples were collected from 50 

schoolchildren aged 9-13 years in Oaxaca, Mexico. 

Samples were analyzed using SCM and selective 

culture on Mitis Salivarius Agar (MSA), with 

presumptive S. mutans colonies confirmed 

biochemically. Selective culture identified 46% of 

participants as positive, whereas SCM detected 18% 

as positive. Relative to culture, SCM demonstrated 

39.1% sensitivity (95% CI: 21.5%–60.1%), 100% 

specificity (95% CI: 87.5%–100%), and 100% 

positive predictive value (95% CI: 66.4%–100%), 

with no false positives observed. The results highlight 

the assay’s rule-in capability for high-density 

pathogenic loads (>10^5 CFU/mL). The diagnostic 

discordance reflects divergent analytical thresholds, 

termed the “Threshold Gap”. While SCM exhibits 

limited sensitivity for low-level colonization, 

its absolute specificity supports its use as a precision 

high-threshold triage tool, identifying pediatric 

patients with clinically significant S. mutans burdens 

who may benefit from intensified preventive 

strategies. Integration with culture or molecular 

approaches can enhance risk stratification and 

precision dentistry workflows. 
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1. INTRODUCTION 

 

The traditional "surgical model" of dentistry, which 

focused predominantly on the restorative correction 

of cavitated lesions, has undergone a fundamental 

paradigm shift toward a "medical model"1. This 

modern approach prioritizes longitudinal disease 

management and the maintenance of ecological 

homeostasis within the oral cavity2, 3. Central to this 

transition is the demand for rapid, point-of-care 

(POC) diagnostic tools that can accurately quantify 

microbial threats before irreversible structural 

damage occurs4. Recent advances in salivaomics and  

non-invasive monitoring have positioned saliva as a 

"diagnostic powerhouse", with more than 300 studies 

in 2024 alone highlighting its potential for precision 

health monitoring5, 6. 

 Dental caries is currently understood through 

the Ecological Plaque Hypothesis, which posits that 

the disease is not caused by an exogenous pathogen 

but rather by a dysbiotic shift in the resident oral 

biofilm7-9. Under conditions of frequent dietary 

carbohydrate intake, the biofilm environment 

becomes persistently acidified, selecting for a unique 

consortium of acidogenic and aciduric pathobionts10, 

11. Recent systematic reviews (2025) confirm that 

while the oral microbiome is highly 

complex, Streptococcus mutans remains a primary 

microbial marker for caries risk due to its unparalleled 

ability to drive this ecological catastrophe12-16. 

 Streptococcus mutans serves as the prototype of 

this cariogenic profile, orchestrating a multifaceted 
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attack on tooth mineral through several key virulence 

factors13,17. The acidogenicity of S. mutans is defined 

as the ability to rapidly ferment sucrose, glucose, and 

fructose into lactic acid via the glycolytic 

pathway18,19. This process can drop the local pH to 

approximately 4.2 within a 24-hour period20. To 

survive this self-induced toxicity, the organism 

exhibits extreme aciduricity7, 21. It utilizes a 

membrane-bound F-ATPase system to pump excess 

hydrogen ions out of the cell. This mechanism allows 

the bacteria to maintain internal pH homeostasis in 

highly acidic environments22. Furthermore, recent 

transcriptomic analyses have elucidated the role of 

glucosyltransferases (gtfB, gtfC, gtfD) in extracellular 

polysaccharide (EPS) synthesis23. This EPS matrix 

acts as a molecular scaffold, promoting microbial 

aggregation and creating "acidic niches" that shield 

pathobionts from the buffering capacity of saliva. 

 Because S. mutans is a commensal member of the 

oral flora at low densities, its mere presence is not 

pathognomonic; rather, its pathogenicity is 

strictly density-dependent24. Accurate risk 

assessment requires distinguishing between various 

colonization states: a) Low-risk colonization 

(CFU/mL): Generally associated with a healthy, 

balanced microbiome where commensal species 

like S. sanguinis predominate25. b) Transitional/ 

Moderate risk (CFU/mL): A "grey zone" where 

microbial shifts are beginning, potentially leading to 

white spot lesions if protective factors are not 

reinforced26. c) High-risk pathogenic loads 

(CFU/mL): A consensus threshold where acid 

production often overwhelms natural re-

mineralization, leading to cavitated lesions27. 

 Technological advances through 2024, notably 

machine learning–integrated caries risk algorithms 

and next-generation immunochromatography 

readers, have measurably increased the precision and 

clinical utility of point-of-care caries forecasting28. 

Addressing the systemic 'valley of death' in Mexican 

biomedical research requires overcoming 

translational barriers to resolve the Threshold Gap 

between analytical detection and clinical decision 

limits29. In this context, we evaluated the SCM 

monoclonal antibody lateral flow assay against 

selective culture, the accepted laboratory "gold 

standard"30, with three primary aims: (1) quantify 

diagnostic accuracy, including sensitivity, specificity, 

and predictive values across clinically relevant 

thresholds; (2) assess reproducibility and 

preanalytical influences that may bias chairside 

results; and (3) determine how high-threshold 

diagnostics perform when integrated into 

contemporary, algorithm-driven risk models. 

Prior work has reported a characteristic 

performance profile for SCM type assays, namely 

high sensitivity with only moderate specificity, 

which underscores the potential for false positive 

classification if used in isolation31. Accordingly, this 

study situates SCM performance within the 

contemporary literature and explores whether 

coupling monoclonal antibody assays with 

automated readers and machine learning risk 

stratification can shift their role from a binary 

screening device to a calibrated component of 

precision dentistry workflows (see Figure 1 – visual 

abstract). 

 

2. MATERIAL AND METHODS 

 

The study design employed a cross-sectional 

diagnostic validation following the 2024-2025 

STARD (Standards for Reporting Diagnostic 

Accuracy) guidelines for clinical microbiology. 

 

2.1 Population and Demographic Selection 

 

The cohort comprised 50 schoolchildren aged 9–13 

years in Oaxaca, Mexico (mean age 10.46 ± 1.15 

years; n = 50). Participants were in the mixed 

dentition phase, a critical window for oral 

microbiome stabilization as permanent teeth erupt 

into a pre-colonized environment32, 33. Subjects who 

had received antibiotic therapy within the preceding 

30 days were excluded to avoid suppression of the 

oral flora34. The sample had a balanced sex 

distribution (24 males, 48%; 26 females, 52%), 

providing an appropriate population for assessment 

of cariogenic activity. 

 

2.2 Salivary Sampling and Point-of-Care Assay 

 

Stimulated whole saliva was collected after ≥60 

minutes abstinence from food, drink, and oral 

hygiene by instructing participants to chew paraffin 

wax for 60–90 seconds and expectorate into a sterile 

container; samples were processed immediately. 

Specimens were handled according to the Saliva 

Check Mutans (SCM) (GC America)  manufacturer 

protocol30, 31, 35: sequential addition of NaOH for 

alkaline lysis, citric/organic acid for neutralization 

to the kit colorimetric end point, and a final 
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neutralizing buffer to condition the sample for 

lateral flow migration. Processed aliquots were 

applied to the SCM lateral flow cassette and read at 

the manufacturer specified time (≈15 minutes); 

indeterminate results were repeated once. Operators 

were trained and blinded to culture results; lot 

numbers and visual end points were recorded. SCM 

outputs (rapid, semi quantitative) were compared 

with selective culture on mitis salivarius bacitracin 

agar as the reference standard. Limitations included 

preanalytical variability (stimulation method, 

timing), potential incomplete neutralization 

affecting antibody binding, semi quantitative output, 

and possible cross reactivity, all of which were 

acknowledged and controlled where feasible. 

 

2.3 Reference Standard: Selective Microbiological 

Culture 

 

Samples were inoculated onto Mitis Salivarius Agar 

(MSA) with bacitracin for selective recovery of 

Streptococcus mutans. A calibrated 1 µL inoculation 

loop was used to plate saliva aliquots; plates were 

incubated at 37°C for 48–96 hours to allow colony 

maturation. Presumptive S. mutans colonies were 

identified by characteristic morphology and 

confirmed by mannitol and sorbitol fermentation. 

Using a 1 µL plating volume, the analytical lower 

limit of detection (LOD) corresponds to 

approximately 1,000 CFU/mL (plated colony count 

× 1,000). Culture based quantification served as the 

reference standard for comparing the SCM clinical 

decision limit (CDL) with the analytical LOD36,37. 

Diagnostic performance was evaluated using a 

contingency table to calculate sensitivity, specificity, 

positive predictive value (PPV), and negative 

predictive value (NPV). Data were analyzed to 

identify the "Threshold Gap" between the culture 

LOD ( CFU/mL) and the SCM CDL ( CFU/mL)38. 

 

3. RESULTS 

 

3.1 Diagnostic Performance 

 

A total of 50 stimulated saliva samples were collected 

from schoolchildren aged 9–13 years and analyzed 

using both an immunochromatographic assay (Saliva-

Check Mutans, SCM) and selective culture as the 

reference method. All samples yielded sufficient 

material for parallel testing and were included in the 

final analysis. Using SCM, 9 of 50 samples 

(18%) were classified as positive for Streptococcus 

mutans. In contrast, selective culture identified 23 of 

50 samples (46%) as positive. Approximate 95% 

confidence intervals for sensitivity, specificity, 

positive predictive value, and negative predictive 

value were calculated using binomial methods and are 

reported to provide an estimate of precision given the 

modest sample size. 

 

Selective culture results and analytical 

characteristics. Saliva samples were plated on Mitis 

Salivarius Agar supplemented with bacitracin and 

incubated at 37°C for 48–96 hours. Inoculation was 

performed using a 1 µL calibrated loop, resulting in 

an estimated analytical LOD of approximately 1,000 

CFU/mL, calculated as the observed colony count 

multiplied by 1,000. MSA supplemented with 

bacitracin was selected as the reference method due 

to its widespread use in clinical and public health 

microbiology laboratories, compatibility with prior 

SCM validation studies, and feasibility in resource-

limited settings. Although alternative media and 

molecular assays may provide higher analytical 

recovery, the use of a low-threshold culture reference 

intentionally accentuates the analytical–clinical 

‘Threshold Gap’ that is central to the present study’s 

objective. 

 Presumptive S. mutans colonies were identified 

based on characteristic morphology and subsequently 

confirmed by mannitol and sorbitol fermentation 

tests39. Using these criteria, 23 samples 

(46%) demonstrated confirmed growth of S. 

mutans above the analytical LOD. 

Concordance between SCM and selective culture. 

Cross-classification of SCM results against selective 

culture demonstrated that 9 samples were true 

positives (TP), 14 were false negatives (FN), 27 were 

true negatives (TN), and no false positives (FP) were 

observed. These concordance data are summarized 

in Table 1. 

 

Table 1. Contingency table for Saliva-Check 

Mutans versus selective culture (n=50) 

  
Culture 

positive 

Culture 

negative 
Total 

SCM 

positive 
9 (TP) 0 (FP) 9 

SCM 

negative 
14 (FN) 27 (TN) 41 

Total 23 27 50 
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Table 2. Diagnostic performance of Saliva-Check 

Mutans (SCM) using selective culture as reference 

standard 
 

      Metric     Value 
95% Confidence 

Interval (CI) 

Sensitivity 39.13% (9/23) 21.51%–59.41% 

Specificity 100% (27/27) 87.23%–100.00% 

Positive  

predictive value 
100% (9/9) 66.37% – 100.00% 

Negative  

predictive value 

65.85% 

(27/41) 
49.41% – 79.92% 

Overall accuracy 72% (36/50) 57.51% – 83.77% 

 

Diagnostic performance of Saliva-Check Mutans. 

Using selective culture as the reference standard, 

SCM demonstrated a sensitivity of 39.13% 

(9/23) and a specificity of 100% (27/27). SCM 

demonstrated a sensitivity of 39.13% (95% CI: 

21.51–59.41%) and a specificity of 100% (95% CI: 

87.23–100.00%). The positive predictive value was 

100.00% (95% CI: 66.37–100.00%) and the negative 

predictive value was 65.85% (95% CI: 49.41–

79.92%). The overall diagnostic accuracy of SCM 

was approximately 72%. Approximate 95% 

confidence intervals for sensitivity, specificity, 

positive predictive value, and negative predictive 

value were calculated using standard binomial 

methods and are reported to provide an estimate of 

precision given the modest sample size. Notably, no 

false-positive SCM results were detected, whereas 14 

samples identified as positive by selective culture 

were classified as negative by SCM, accounting for 

the reduced sensitivity observed (Table 2). 

 

Analytical Thresholds and Comparative 

Performance. The analytical LOD of selective culture 

was approximately 1,000 CFU/mL, determined by 

the use of a calibrated 1 µL inoculation loop and the 

requirement for visible colony formation. This 

reflects the high sensitivity of culture for detecting 

low-density Streptococcus mutans colonization. In 

contrast, the CDL of the SCM assay is not explicitly 

defined but is inferred to be substantially higher based 

on observed discordance, defining the “Threshold 

Gap” between the two methods. 

To contextualize these findings, we compared 

results with an independent dataset (n =25) evaluating 

SCM, Caries Risk Test (CRT), and CariScreen ATP 

bioluminescence using conventional culture31. In the 

contextual cohort, culture identified 52% of subjects 

as high risk, and no false-negative classifications 

were observed. As summarized in Table 3, SCM 

 

Table 3. Unified Comparative Performance of Chairside Assays Across Independent Cohorts* 

 

Study / 

Assay 

Cohort Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV  

(95% CI) 

NPV  

(95% CI) 

Accuracy  

(95% CI) 

SCM 

(Current 

Study) 

Oaxaca 

(n=50) 

39.13%  

(21.51-59.41) 

100.00%  

(87.23-100.00) 

100.00%  

(66.37-100.00) 

65.85%  

(49.41-79.92) 

72.00%  

(57.51-83.77) 

SCM 31 Babu et al., 

2019 

(n=25) 

88.42%  

(61.65-98.43) 

75.00%  

(42.81-94.51) 

81.25%  

(54.35-95.95) 

100.00%  

(63.06-100.00) 

88.00%  

(68.78-97.45) 

CRT 31 Babu et al., 

2019 

(n=25) 

93.14%  

(66.13-99.82) 

91.67%  

(61.52-99.79) 

92.86%  

(66.13-99.82) 

100.00%  

(73.54-100.00) 

96.00%  

(79.62-99.90) 

CariScreen 

ATP31 

Babu et al., 

2019 

(n=25) 

92.86%  

(66.13-99.82) 

91.67%  

(61.52-99.79) 

92.86%  

(66.13-99.82) 

91.67%  

(61.52-99.79) 

96.00%  

(79.62-99.90) 

Values are reported as percentages. Conventional culture served as the reference standard. PPV, positive predictive 

value; NPV, negative predictive value. The current study used Mitis Salivarius Agar (MSA) with biochemical 

confirmation via mannitol and sorbitol fermentation as the selective culture reference standard. Babu et al., 2019 

employed Mitis Salivarius Bacitracin (MSB) agar as the conventional selective culture reference, with bacitracin 

providing selective inhibition of non-mutans streptococci31. *Note: The diagnostic performance of SCM is population-

dependent; the observed sensitivity and specificity are functions of the baseline caries risk and microbial density 

distribution within the study cohort, rather than intrinsic assay instability. All 95% Confidence Intervals (CI) were 

calculated using the Clopper-Pearson exact method. 

 



Salivary S. mutans Diagnostic Thresholds 

www.discoveriesjournals.org/discoveries 6 

showed higher sensitivity (88.42%) but lower 

specificity (75.00%) compared with our study 

(39.13% sensitivity; 100% specificity). McNemar’s 

chi-square test revealed no statistically significant 

discordance between chairside assays and culture in 

the contextual dataset (P ≥ 0.47), in contrast to the 

pronounced Threshold Gap observed in the Oaxaca 

cohort. These results indicate that SCM performance 

is primarily influenced by population risk distribution 

and the characteristics of the reference standard, 

rather than by intrinsic assay variability. 

Time-to-result varied markedly: CariScreen ATP 

produced results in under one minute, SCM in ~15 

minutes, and culture required 24-96 hours. Only 

culture enabled quantitative bacterial assessment, 

whereas chairside assays provided qualitative or 

threshold-based outputs. While ATP 

bioluminescence assays provide rapid (<1 minute) 

assessment of total biofilm metabolic activity, they 

lack taxonomic specificity31. In contrast, the SCM 

immunochromatographic assay provides species-

specific targeting of S. mutans, the primary driver of 

the acidogenic shift in the oral microbiome40. Recent 

literature (2024–2025) emphasizes that while total 

biomass measured by ATP is a general marker of oral 

hygiene, identifying the presence of high-density 

pathobionts such as S. mutans is critical for precision 

dentistry and for implementing targeted antimicrobial 

or preventive therapies7,13,15. Scientifically, SCM is 

preferable in clinical scenarios where the 

identification of the biological driver of dysbiosis is 

more relevant than the overall metabolic state41. 

These findings support SCM as a rapid, high-

threshold “rule-in” tool for point-of-care risk 

stratification when integrated into clinical workflows. 

The observed performance differences and threshold-

dependent discordance motivate a deeper exploration 

of the biological, methodological, and clinical factors 

influencing SCM utility, as discussed in the following 

section. 

4. DISCUSSION 

 

The marked discrepancy between the diagnostic 

performance of SCM observed in our Oaxaca, 

Mexico pediatric cohort and results reported in prior 

studies motivates the concept introduced here as 

the “Threshold Gap”31. In our cohort, SCM 

demonstrated a sensitivity of 39.13% and a specificity 

of 100% relative to selective culture, whereas Babu et 

al. reported substantially higher sensitivity (88.42%) 

accompanied by lower specificity (75.00%)31. These 

divergent outcomes indicate that SCM performance is 

highly contingent upon both the baseline caries risk 

of the tested population and the analytical 

characteristics of the reference (“gold standard”) 

method used for comparison. 

  The low sensitivity observed in the Oaxaca cohort 

indicates that SCM frequently failed to detect low-

density Streptococcus mutans colonization that was 

otherwise identified by selective culture. This finding 

is consistent with observations by Saravia et al., who 

reported perfect agreement (Kappa=1) between SCM 

and culture when evaluating individuals preclassified 

as high-risk42. Collectively, these data suggest that 

SCM is not intended as an analytical 

presence/absence assay but rather as a detector 

of high-density pathogenic loads exceeding a defined 

clinical decision limit. The elevated sensitivity 

reported by Babu et al. likely reflects cohort 

enrichment for individuals with microbial burdens 

above this threshold31. Conversely, in low-risk 

populations, SCM’s analytical cutoff yields an 

apparent loss of sensitivity despite appropriate 

performance for its intended clinical application. 

 The 100% specificity observed in our cohort 

contrasts sharply with values reported by Voelker et 

al. (25%) and Babu et al. (75%)31,43. From a clinical 

and public health perspective, high specificity 

represents a critical advantage, as it minimizes false-

positive classifications and reduces the risk of 

unnecessary or overly aggressive interventions. 

Given the multifactorial nature of dental caries, in 

which salivary buffering capacity, salivary flow rate, 

dietary patterns, and host-related factors collectively 

modulate disease risk44, a highly specific SCM 

functions effectively as a rule-in test by selectively 

identifying individuals with genuinely elevated 

pathogenic burden, thereby guiding intensive 

preventive strategies while minimizing unnecessary 

interventions and microbiome disruption in 

moderate-risk carriers. 

 Reported diagnostic accuracy is strongly 

influenced by the choice of reference medium. In the 

present study, Mitis Salivarius Bacitracin (MSB) agar 

was used for selective culture. Prior evaluations 

indicate that MSB exhibits lower recovery rates for S. 

mutans compared with alternative media such as 

TYCSB or HLR-S45. Reduced recovery by the 

reference standard may bias performance estimates 

by underestimating sensitivity and inflating 

specificity of the index test. Methodological 
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heterogeneity in reference standards therefore 

contributes substantially to interstudy variability. In 

this context, Damle et al. have argued that molecular 

approaches, including PCR-based assays, provide 

superior analytical precision and speed, and may 

represent a more appropriate benchmark for future 

validation studies of chairside diagnostics46. 

Adoption of molecular reference standards could help 

resolve the “Threshold Gap” inherent in antigen-

based detection systems. 

 The clinical relevance of detecting high S. 

mutans loads extends beyond species presence. High-

density S. mutansfacilitates biofilm maturation and 

the incorporation of additional pathogenic taxa 

through glucosyltransferase-mediated mechanisms 

(GtfB and GtfC), thereby amplifying cariogenic 

potential47. In this context, SCM may function as a 

sentinel marker of broader dysbiotic shifts within the 

oral microbiome. Nevertheless, because SCM 

measures antigenic presence of a single species, its 

interpretive value is maximized when integrated into 

multifactorial risk models. Morou-Bermudez et al. 

emphasize that metabolic parameters, including the 

balance between acidogenic and alkali-generating 

pathways (sugar versus urea metabolism), are equally 

critical determinants of caries risk48. Accordingly, 

SCM should be viewed as one component within a 

composite biological framework rather than a 

standalone diagnostic. 

 

4.1. Limitations 

Several limitations warrant consideration. First, 

although selective culture was performed using Mitis 

Salivarius Agar supplemented with bacitracin, 

differences in formulation, incubation conditions, and 

confirmatory workflows relative to standardized 

MSB-based protocols used in other studies31 may 

influence comparative diagnostic performance 

metrics. In the present study, biochemical 

confirmation using mannitol and sorbitol 

fermentation was required to ensure accurate 

identification of S. mutans, which may affect 

interstudy comparability of culture positivity rates. 

Second, while the sample size in the present study 

(n=50) is appropriate for a diagnostic validation 

focused on high-threshold detection, it limits the 

broader epidemiological generalizability of 

prevalence estimates. For comparison, Babu et al. 

evaluated SCM performance in a smaller cohort 

(n=25), yet reported higher sensitivity and lower 

specificity, highlighting the influence of both cohort 

size and population risk distribution on measured 

diagnostic metrics31. Nevertheless, given the high 

background prevalence of S. mutans in this pediatric 

age group and the pronounced Threshold Gap 

observed between SCM and selective culture in 

Oaxaca, our sample provided sufficient statistical 

resolution to characterize the assay’s specificity and 

rule-in performance. Future multicenter and 

longitudinal studies with larger and more diverse 

populations will be essential to validate these findings 

across varying epidemiological contexts and to refine 

SCM clinical decision thresholds. Third, the SCM 

assay does not provide quantitative bacterial counts 

beyond its decision threshold, nor does it offer insight 

into microbial viability or broader community 

structure. Finally, interstudy comparisons are 

constrained by heterogeneity in sampling protocols, 

cohort stratification, reference standards, and 

analytical thresholds, complicating direct numerical 

comparisons across reports. 

4.2. Clinical and research implications 

From a clinical standpoint, SCM should be positioned 

as a high-threshold, point-of-care “rule-in” assay to 

identify pediatric patients with clinically 

meaningful Streptococcus mutans burdens who may 

benefit from intensified preventive strategies. Its 

primary utility lies in guiding targeted interventions 

while minimizing overtreatment in individuals with 

low or moderate colonization. For population-level 

surveillance or detection of low-density colonization, 

quantitative culture or molecular diagnostics remain 

indispensable. Future research should emphasize 

standardized reference methods, explicit risk 

stratification, and integration of SCM with metabolic 

and host-based indicators to enhance precision in 

caries risk assessment. By situating SCM within a 

multifactorial diagnostic framework, clinicians can 

leverage its specificity without compromising 

broader preventive strategies, advancing the goals of 

precision dentistry. 

5. CONCLUSION 

 

This analysis demonstrates that SCM functions as 

a specialized high-threshold discriminator rather than 

a universal screening tool. The apparent discordance 

between the low sensitivity observed in the Oaxaca, 

Mexico cohort and higher sensitivities reported 
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elsewhere is attributable to differences in population 

risk profiles, analytical thresholds, and reference 

standards. While prior studies highlight the potential 

for false positives or reduced specificity in certain 

settings31,43, our findings underscore SCM’s value as 

a highly specific “rule-in” diagnostic in pediatric 

populations. As a pilot validation study, our results 

highlight that its limited sensitivity to low-level 

colonization should be interpreted not as technical 

failure but as an intentional clinical filter designed to 

target high-risk pathogenic loads, underscoring the 

need for larger, prospective studies. SCM offers 

unique species-specific targeting that complements 

rapid metabolic assays, such as ATP 

bioluminescence, which do not identify specific 

pathobionts. However, the continued evolution of 

precision dentistry will require replacing culture-

based benchmarks with standardized molecular 

approaches, such as qPCR, to resolve the "Threshold 

Gap". When integrated with quantitative, metabolic, 

and molecular approaches, SCM may contribute 

meaningfully to precision dentistry frameworks 

aimed at minimizing overtreatment while targeting 

those at greatest risk.  
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